
The Gurevich–Zybin system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 3823

(http://iopscience.iop.org/0305-4470/38/17/008)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 3823–3840 doi:10.1088/0305-4470/38/17/008

The Gurevich–Zybin system

Maxim V Pavlov

Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan

E-mail: m.v.pavlov@lboro.ac.uk

Received 18 January 2005, in final form 20 January 2005
Published 13 April 2005
Online at stacks.iop.org/JPhysA/38/3823

Abstract
We present three different linearizable extensions of the Gurevich–Zybin
system. Their general solutions are found by reciprocal transformations. In this
paper we rewrite the Gurevich–Zybin system as a Monge–Ampere equation. By
application of reciprocal transformation this equation is linearized. Infinitely
many local Hamiltonian structures, local Lagrangian representations, local
conservation laws and local commuting flows are found. Moreover, all
commuting flows can be written as Monge–Ampere equations similar to the
Gurevich–Zybin system. The Gurevich–Zybin system describes the formation
of large scale structure in the Universe. Second harmonic wave generation is
known in nonlinear optics. In this paper we prove that the Gurevich–Zybin
system is equivalent to a degenerate case of second harmonic generation. Thus,
the Gurevich–Zybin system is recognized as a degenerate first negative flow of
two-component Harry Dym hierarchy up to two Miura-type transformations. A
reciprocal transformation between the Gurevich–Zybin system and degenerate
case of the second harmonic generation system is found. A new solution for
second harmonic generation is presented in implicit form.

PACS number: 02.30.Ik

To the memory of Professor Andrea Donato (Messina University)

1. Introduction

Invisible nondissipative dark matter plays a decisive role in the formation of large scale
structure in the Universe: galaxies, clusters of galaxies, superclusters. Corresponding
nonlinear dynamics can be described (see [1]) by the following hydrodynamic-like system,

ρt + ∇(ρu) = 0, ut + (u∇)u + ∇� = 0, �� = ρ, (1)

where the first two equations are the usual hydrodynamic equations (the continuity equation
and the Euler equation, respectively), but the third is the famous Poisson equation. This
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system was first derived by Jeans (see [2] and also [3]) for a description of instabilities of a
homogeneous distribution of a matter.

Such dynamics of a dissipationless gravitating gas is a special limit (ε → 0) of another
system (another sign of ρ is inessential)

ρt + ∇(ρu) = 0, ut + (u∇)u + ∇� = 0, �� = ε e� − ρ

describing fully nonlinear flows in a two-temperature unmagnetized collisionless plasma in
dimensionless variables (nonlinear ion-acoustic waves, see for instance [4]).

The main advantage of the Jeans theory is a reckoning of two factors: gravity attracting
matter in separate lumps and clots, and pressure decreasing an inhomogeneity of matter in the
Universe.

Recently a new achievement in the investigation of system (1) was made (see [1]) in
cosmology. The nonlinear one-dimensional dynamics of dark matter is described by the
equations [1]

ut + uux + υ = 0, υt + uυx = 0, (2)

where ρ = υx , υ = �x . The analysis of equations (2) in multimode form demonstrates the
transition from the hydrodynamic to the equilibrium kinetic state [1]. It means that the exact
solution of equations (2) describes a fundamental physical process (see [1]).

It is amazing that the inhomogeneous hydrodynamic-type system (2) can be integrated, up
to the first singularity, by the hodograph method (see [1]). For this reason we will henceforth
call system (2) the Gurevich–Zybin system, emphasizing that the one-dimensional reduction
(2) of the system (1) is integrable.

Here we give the general solution by the method of reciprocal transformations. Moreover,
we present three different linearizable extensions of this system (2) with their general
solutions given by corresponding reciprocal transformations. Actually these reciprocal
transformations have clear pure mathematical (hodograph method) and physical (transition
from Euler to Lagrange variables) interpretations. In the next section we present three
linearizable extensions of the Gurevich–Zybin systems with their general solutions. In
the third section the relationship between two-component generalization of the Hunter–
Saxton equation and the Gurevich–Zybin system is established. In the fourth section the
Gurevich–Zybin system is rewritten as a Monge–Ampere equation (following the approach
developed by Andrea Donato). In the fifth section a bi-Hamiltonian structure of the
Gurevich–Zybin system is found (following the approach developed by Yavuz Nutku). In
the sixth section, by the application of a reciprocal transformation, the simplest recursion
operator is constructed. Infinitely many local conservation laws, local commuting flows,
local Lagrangians and local Hamiltonians are found. Moreover, all commuting flows
are Monge–Ampere equations. Thus, the Gurevich–Zybin system is a member of an
integrable hierarchy of Monge–Ampere equations. In the seventh section a bi-Hamiltonian
formulation for the Gurevich–Zybin system is given in a canonical form. The Gurevich–
Zybin system is recognized as a first negative flow of two-component Harry Dym hierarchy.
In the eighth section Miura type and reciprocal transformations between the Gurevich–
Zybin system and Kaup–Boussinesq hierarchy are given. In the ninth section we finally
prove that the Gurevich–Zybin system is equivalent to a degenerate case of the second
harmonic generation system up to the above-mentioned transformations. A new solution
of the second harmonic generation system is found. In the tenth section we discuss
integrability of the Gurevich–Zybin system in the N-component case. In conclusion we
discuss the sort of integrable problems belonging to some different hierarchies of integrable
equations.
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2. General solution

The Gurevich–Zybin system (1) in the one-dimensional case precisely has the form

ρt + ∂x(ρu) = 0, ut + uux + �x = 0, �xx = ρ. (3)

This system can be generalized in at least three different forms:

ρt + ∂x(ρu) = 0, ut + uux + µ′′′(�x) = 0, �xx = ρ, (4)

ρt + ∂x(ρu) = 0, ut + uux + �x = 0, �xx = B(ρ), (5)

ρt + ∂x(ρu) = 0, ut + uux + µ′′′(�x) = 0, ∂xC(�x) = ρ, (6)

where µ(z), B(ρ) and C(z) are arbitrary functions. It is interesting that it is not obvious that
system (4) is equivalent to the Gurevich–Zybin system (3). Indeed, the system (4) written
like (2)

zt + uzx = 0, ut + uux + µ′′′(z) = 0 (7)

is exactly (2) up to the point transformation υ = µ′′′(z). One can introduce the reciprocal
transformation

dz = ρ dx − ρu dt, dτ = dt. (8)

Then ∂x = ρ∂z and ∂t = ∂τ − ρu∂z. Thus, the system (4) has the form(
1

ρ

)
τ

= uz, uτ = −µ′′′(z), (9)

in new variables, where z = �x . Thus, the general solution of system (9) is

u = −µ′′′(z)τ + D′(z),
1

ρ
= −µ′′′′(z)τ 2/2 + D′′(z)τ + E′′(z),

where D(z) and E(z) are arbitrary functions. Finally, the general solution of system (4) can
be given in the implicit form

u = −µ′′′(z)t + D′(z), ρ = [−µ′′′′(z)t2/2 + D′′(z)t + E′′(z)]−1,

x = −µ′′′(z)t2/2 + D′(z)t + E′(z), (10)

� = (µ′′(z) − zµ′′′(z))t2/2 + (zD′(z) − D(z))t + zE′(z) − E(z),

where z is a parameter here.
The above reciprocal transformation applied to system (5) yields(

1

ρ

)
τ

= uz, uτ = −υ, υz = B(ρ)/ρ,

where υ = �x . If the function ρ can be explicitly expressed from the algebraic equation

τ = G(z) −
∫ ρ dθ

θ2
√

2
∫

B(θ)θ−3 dθ − F(z)

,

where F(z) and G(z) are arbitrary functions, then the general solution of system (5) can
be obtained. For instance, if B(ρ) = ρ, then a general solution is already given by (10)
(remember that in such sub-case systems (4) and (5) coincide if µ(z) = z4/24); in the simplest
perturbed case B(ρ) = ρ + δ/ρ (δ = const) the general solution is expressed via Weierstrass
elliptic functions

ρ = δ

6

[
℘(τ − G(z),

δ

3
,

δ2

36
F(z))

]−1

, uz = 6

δ
℘ ′, υz = 1 − 36

δ
℘2.
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The reciprocal transformation (8) applied to the system (6) yields(
1

ρ

)
τ

= uz, uτ = −µ′′′(υ), C(υ) = z,

where υ = �x . Thus, the general solution of this system is

υ = V (z), u = D′(z) − µ′′′(υ)τ,

ρ =
[
E′′(z) + D′′(z)τ − µ′′′′(υ)

2C ′(υ)
τ 2

]−1

,

x = E′(z) + D′(z)τ − µ′′′(υ)τ 2/2,

where D(z),E(z) are arbitrary functions and V (z) is the inverse function to C(υ). Finally,
the general solution of system (6) can be given in the implicit form

υ = V (z), u = D′(z) − µ′′′(υ)t,

ρ =
[
E′′(z) + D′′(z)t − µ′′′′(υ)

2C ′(υ)
t2

]−1

,

x = E′(z) + D′(z)t − µ′′′(υ)t2/2,

� = zE′(z) − E(z) + (zD′(z) − D(z))t + [G(υ) − zG′(υ)]t2/2,

where G′ = µ′′′C ′ and z is a parameter here. Also, the system (6) can be written in the
hydrodynamic-like form

ρt + ∂x(ρu) = 0, ut + uux +
1

ρ
∂xP = 0, (11)

where the pressure P is a nonlocal function of the density ρ

P = P
(
V

(
∂−1
x ρ

))
.

In the particular case C(υ) = υ the system (6) coincides with the system (4); the system (6)
was written in form (11) in [5] for the particular case µ(υ) = υ4/24 and C(υ) = υ.

3. Two-component generalization of the Calogero equation

The simplest two-component linearizable generalization

ηt + ∂x(ηu) = 0, uxt + uuxx + �(η, ux) = 0 (12)

of the Calogero equation (see [6])

uxt = uuxx + R(ux)

was presented (functions �(a, b) and R(c) are arbitrary here) in [7]. Some particular cases of
the Calogero equation such as the Hunter–Saxton equation (i.e. R(c) = νc2, where ν = const;
see [8]) are interesting from a physical point of view. The Calogero equation is linearizable
by a reciprocal transformation (see [7]). For instance, the Hunter–Saxton equation is related
to the famous Liouville equation by a reciprocal transformation (see [9]). Thus, the system
(12) is a natural generalization of the Liouville equation on the two-component case up to a
module of a (invertible) reciprocal transformation.

The reciprocal transformation

dζ = η dx − ηu dt, dy = dt (13)

applied to system (12) yields the ordinary differential equation

syy + �(e−s , sy) = 0,
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where s = −ln η, which can be reduced to the first-order equation

a da + �(e−s , a) ds = 0, (14)

where a = sy = ux . Then a general solution can be constructed in two steps from

uζ =
(

1

η

)
y

, dx = 1

η
dζ + u dy.

A solution q(s, a) of the linear equation

∂q

∂s
= �(e−s , a)

a

∂q

∂a
(15)

determined by the characteristic equation (14) yields the extra conservation law

ρt + ∂x(ρu) = 0,

where ρ(η, ux) = η exp q. The comparison of the second equation in (12) and the second
equation in (3) yields another relationship

� = ρ + u2
x.

Thus, a solution of the nonlinear equation (substitute � from the above equation into (15))

qs =
(

a +
eq−s

a

)
qa

describes a transformation between the Gurevich–Zybin system (3) and the two-component
generalization of the Hunter–Saxton equation (12).

Remark 1. The above equation under the substitution

q = s + ln
(n

2
e−3s − a2

)
transforms into the well-known inhomogeneous Riemann–Monge–Hopf equation

ny + nnc = − 2c

9y2
,

where y = e−3s/3 and c = a2. Its general solution can be given just in the parametric form

n = 1
3A1(ξ)y−2/3 + 2

3A2(ξ)y−1/3, c = A1(ξ)y1/3 + A2(ξ)y2/3,

where ξ is a parameter and A1(ξ), A2(ξ) are arbitrary functions. However, the general solution
of the equation of the first order depends on one function of a single variable only. It means
that if for instance A1(ξ) �= const, then by re-scaling A1(ξ) → ξ the general solution takes
the form

n = 1
3ξy−2/3 + 2

3A(ξ)y−1/3, c = ξy1/3 + A(ξ)y2/3,

where A(ξ) is an arbitrary function.

In a particular case the substitutions (see [7])

ρ = − 1
2

(
u2

x + η2
)
, �(η, ux) = 1

2

(
u2

x − η2
)

(16)

connect the Gurevich–Zybin system (3) with two-component Hunter–Saxton system (see (12)
and [10]), which is a bi-directional version of the Hunter–Saxton equation. A general solution
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of the Gurevich–Zybin system in field variables η and u has the implicit form with respect to
the parameter ζ

η =
[

1

k′(ζ )
+

1

4
k′(ζ )(t − m(ζ))2

]−1

,

u = 1

2
tk(ζ ) − 1

2

∫
m(ζ) dk(ζ ), (17)

x =
∫ [

1

k′(ζ )
+

1

4
k′(ζ )m2(ζ )

]
dζ +

1

4
t2k(ζ ) − 1

2
t

∫
m(ζ) dk(ζ ),

where m(ζ), k(ζ ) are arbitrary functions. One can substitute the above expression for η

into the first equation in (16) and compare expressions for (ρ, x, u) from (10) (in this case
µ′′′(z) = z) and above; then a relationship between the arbitrary functions k,m and D,E will
be reconstructed.

4. Reformulation of the Gurevich–Zybin system as a Monge–Ampere equation

A lot of physically motivated nonlinear systems can be written as Monge–Ampere equations
(see [11]). At this moment we have no unique method for constructing such relationships.
One simple approach was suggested to the author by Andrea Donato (see [12]) at the ‘Lie
Group Analysis’ conference in Johannesburg at 1996.

The Gurevich–Zybin system in physical field variables (3) has four local conservation
laws

ut + ∂x(u
2/2 + �) = 0, ρt + ∂x(ρu) = 0,

∂t (ρu) + ∂x

(
ρu2 + �2

x

/
2
) = 0, ∂t

(
ρu2 − �2

x

)
+ ∂x(ρu3) = 0

as a consequence of the obvious local Hamiltonian structure

υt = δH2

δu
, ut = −δH2

δυ
, (18)

where the Hamiltonian is H2 = 1
2

∫
[−u2υx + υ2] dx, the momentum is H1 = ∫

uυx dx, and
two Casimirs are functionals Q1 = ∫

u dx and Q2 = ∫
ρ dx of the corresponding Poisson

bracket

{ρ(x), u(x ′)} = {u(x), ρ(x ′)} = δ′(x − x ′). (19)

The existence of the above first three local conservation laws is obvious. However, the
fourth conservation law is not easy to check. Since ρ = �xx , then ρu = −�xt , then
ρu2 +�2

x

/
2 = �tt , then the above fourth conservation law is valid. Eliminating physical field

variables ρ and u from these three equations, the Monge–Ampere equation is given by

�xx�tt − �2
xt = 1

2�2
x�xx. (20)

In paper [1] the Gurevich–Zybin system was linearized by a hodograph method. A general
solution has also been presented. Thus, this Monge–Ampere equation is linearizable and has
the general solution in implicit form (see the end of section 2)

� = − 1
4υ2t2 + (υD′(υ) − D(υ))t + υE′(υ) − E(υ), x = −υt2/2 + D′(υ)t + E′(υ),

where D(υ) and E(υ) are arbitrary functions, υ is a parameter here.
Since the Gurevich–Zybin system can be written in the form (4), (7), we shall use an

arbitrary value of function µ(z) in the next two sections.
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5. Bi-Hamiltonian structure

The Gurevich–Zybin system (7) has local bi-Hamiltonian structure, where the first local
Hamiltonian structure is (18)

zt = δH2

δu
, ut = −δH2

δz
. (21)

There are just three conservation laws

∂tρ + ∂x(ρu) = 0, ∂t (ρu) + ∂x[ρu2 + µ′′(�x)] = 0,

∂t [ρu2 − 2µ′′(�x)] + ∂x(ρu3) = 0,

associated with the first Poisson bracket (19). The Hamiltonian is H2 = ∫
[−ρu2 +

2µ′′(�x)] dx, the momentum is H1 = ∫
ρu dx and the Casimir is H0 = ∫

ρ dx. The
corresponding Lagrangian representation is

S1 =
∫ [

z2
t

2zx

+ µ′′(z)
]

dx dt, (22)

where u = −zt/zx . Thus, the Lagrangian

S1 =
∫ [

�2
xt

2�xx

+ µ′′(�x)

]
dx dt

creates the Euler–Lagrange equation

�xx�tt − �2
xt = µ′′(�x)�xx, (23)

which is a Monge–Ampere equation (cf (20)).
At the same time (23) allows another Lagrangian representation (see [13])

S2 =
∫ [

1

2
�xx�

2
t − µ(�x)

]
dx dt. (24)

Thus, the Monge–Ampere equation (23) has the second Hamiltonian structure

rt = ∂x

δH̄ 2

δz
, zt = ∂x

δH̄ 2

δr

determined by the local Poisson bracket

{z(x), r(x ′)}2 = {r(x), z(x ′)}2 = δ′(x − x ′), (25)

where r = �xx�t , the Hamiltonian is H̄ 2 = ∫ [
r2

2zx
+ µ(z)

]
dx, the momentum is

H̄ 1 = ∫
rz dx, two Casimirs are Q̄1 = ∫

r dx and Q̄2 = ∫
z dx. Four local conservation laws

associated with the above second Hamiltonian structure are

zt = ∂x

(
r

zx

)
, ∂t

[
r2

2zx

+ µ(z)

]
= ∂x

[
µ′(z)

r

zx

+
1

6
∂x

(
r3

z3
x

)]
,

rt = ∂x

[
µ′(z) + ∂x

(
r2

2z2
x

)]
, ∂t (rz) = ∂x

[
zµ′(z) − µ(z) +

z

2
∂x

(
r2

z2
x

)]
.

6. Recursion operator: integrability of the GZ hierarchy

Applying the reciprocal transformation (8) simultaneously to both Lagrangian representations
(22) and (24), one obtains the variation principles in other independent variables
(a recalculation of Lagrangians under reciprocal transformations is given in detail in [14])

S1 =
∫ [

1

2
x2

τ + µ′′(z)xz

]
dz dτ and S2 =

∫ [
1

2
�̃2

τ − µ(z)�̃zz

]
dz dτ,
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where u = xτ , ρ−1 = xz, x = �̃z (see the first conservation law associated with the second
Hamiltonian structure (25): d� = z dx + r

ρ
dt or d�̃ = x dz − r

ρ
dτ , where xz = � + �̃).

Then the Euler–Lagrange equation is xττ = −µ′′′(z). This equation can easily be integrated
(see (10)). The corresponding Poisson brackets (see (19) and (25))

{x(z), u(z′)}1 = −{u(z), x(z′)}1 = δ(z − z′),
{p(z), �̃(z′)}2 = −{�̃(z), p(z′)}2 = δ(z − z′),

where u = �̃zτ and d�̃ = x dz − p dτ (i.e. p = r/ρ ≡ �t ), create the recursion operator

R̂ = −
(

∂2
z

∂2
z

)
,

where

{x(z), u(z′)}2 = −{u(z), x(z′)}2 = −δ′′(z − z′).

Thus, the Gurevich–Zybin system in these independent variables has an infinite set of local
Hamiltonian structures, conservation laws and commuting flows. For instance, all such
Hamiltonians are

H̃ k = (−1)k
∫ [

1

2
p(k)2

+ µ(k+2)(z)�̃(k)

]
dz, k = 0,±1,±2, . . . .

The corresponding commuting flows

�̃τkτ k = −µ(k+2)(z)

can easily be integrated (see (10)). However, in the independent variables (x, tk) they can be
written in the form (cf (7))

∂tku
k + uk∂xu

k + µ(2k+3)(z) = 0, ∂tk z + uk∂xz = 0, (26)

where

u0 ≡ u, uk+1 = 1

ρ
∂xu

k, u−k−1 = ∂−1
x (ρu−k), k = 0, 1, 2, . . . . (27)

Thus, all commuting flows to the Gurevich–Zybin system created by the above bi-Hamiltonian
structure are Monge–Ampere equations (cf (23))

�xx�tktk − �2
xtk = µ(2k+2)(�x)�xx,

where

uk = −�tk+1 , �xtk = �xx�tk+1 , k = 0,±1,±2, . . . .

All local Lagrangians are

S2,k =
∫ [

1

2
�xx�

2
tk − µ(2k)(�x)

]
dx dt k,

S1,k =
∫ [

�2
xtk

2�xx

+ µ(2k+2)(�x)

]
dx dt k,

S0,k =
∫ [

1

2�xx

[(
�xtk

�xx

)
x

]2

− µ(2k+4)(�x)

]
dx dt k,

S−1,k =
∫ [

1

2�xx

[(
1

�xx

[(
�xtk

�xx

)
x

])
x

]2

+ µ(2k+6)(�x)

]
dx dt k, . . .
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Remark 2. All commuting flows have infinitely many different local representations via
different pairs of field variables (z, uk), see (27). For instance (cf (26))

ztk + ∂xu
k−1 = 0, ∂tku

k−1 +

(
uk−1

x

)2

zx

+ µ(2k+2)(z) = 0,

ztk + ∂x

(
uk−2

x

zx

)
= 0, ∂tku

k−2 + ∂x

[(
uk−2

x

)2

2z2
x

]
+ µ(2k+1)(z) = 0.

The theory of integrable systems with a multi-Lagrangian structure is presented in [15]
(see also [16]). Usually, every local Lagrangian creates a nonlocal Hamiltonian structure. Such
explicit formulae of nonlocal Hamiltonian structures, nonlocal commuting flows, nonlocal
conservation laws as well as nonlocal Lagrangians can be found iteratively from the formulae
already given above.

7. Another bi-Hamiltonian structure

Now in this and the next two sections we identify υ ≡ z, i.e. we concentrate on the case
µ′′′(z) = z (see (4)). In the two previous sections we discussed bi-Hamiltonian structure of
the Gurevich–Zybin system. Here we preserve the first Hamiltonian structure (see (18), (21)),
but change the second one! However, this new second Hamiltonian structure (see below) is
not from this set!

The Gurevich–Zybin system (2) is an Euler–Lagrange equation of corresponding
variational principle (see (22), when µ′′(z) = z2/2)

S = 1

2

∫ [
z2
t

zx

+ z2

]
dx dt.

However, the astonishing fact is that the Gurevich–Zybin system (2) has another
Hamiltonian structure connected with the same Lagrangian density. Namely (see for details
[16], especially formulae (43), (52)–(54) therein), the Lagrangian (cf S)

S̃ = 1

2

∫ [
px

zx

(2zt − px) + z2

]
dx dt

determines the same Euler–Lagrange equations (2) but with another Hamiltonian structure

ut = −∂−1
x

δH1

δu
+ ux∂

−1
x

δH1

δz
, zt = ∂−1

x

(
ux

δH1

δu
+ zx

δH1

δz

)
+ zx∂

−1
x

δH1

δz
,

where u = −px/zx (i.e. p = �t ).

Remark 3. This bi-Hamiltonian structure first was discovered by Yavuz Nutku [17] and later it
was independently found in [5] (see formula (9) therein) exactly as was done in [16]. However,
here we repeat and emphasize the main observation of this section is that both Hamiltonian
structures have the same Lagrangian density! This is the first such example in the theory of
integrable systems.

Canonical representation for both Hamiltonian structures and recursion operator. The
Poisson bracket

{u(x), u(x ′)}1 = 0, {ρ(x), u(x ′)}1 = δ′(x − x ′),

{u(x), ρ(x ′)}1 = δ′(x − x ′), {ρ(x), ρ(x ′)}1 = 0
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of the first Hamiltonian structure is given in its canonical form (for more details see the review
[18]). However, the Poisson bracket

{u(x), u(x ′)}2 = −∂−1δ(x − x ′), {u(x), ρ(x ′)}2 = −uxδ(x − x ′),

{ρ(x), u(x ′)}2 = uxδ(x − x ′), {ρ(x), ρ(x ′)}2 = −(ρ∂x + ∂xρ)δ(x − x ′)

of the second Hamiltonian structure can be reduced by the Darboux theorem to the canonical
form

{w(x),w(x ′)}2 = δ′(x − x ′), {η(x),w(x ′)}2 = 0,

{w(x), η(x ′)}2 = 0, {η(x), η(x ′)}2 = δ′(x − x ′)

by the Miura-type transformation (see the first equation in (16))

w = ux, ρ = − 1
2 (w2 + η2).

Then the Gurevich–Zybin system written in a modified form (see formula (26) in [7], other
details in the last section 5 and references [6, 7] therein)

ηt + ∂x(uη) = 0, uxt + uuxx + 1
2u2

x = 1
2η2 (28)

can be recognized as the two-component generalization of the Hunter–Saxton equation (cf
[8–10]).

Remark 4. In fact, the Casimir density η of the second Hamiltonian structure was found
in [5] (see formula (18) therein). However, the Gurevich–Zybin system was not presented
in the form (28) there. Moreover, we emphasize the main result of this paper is that the
Gurevich–Zybin system belongs to the well-known class of integrable systems. In this section
we prove that the Gurevich–Zybin system is a member of an integrable hierarchy embedded
into 2 × 2 spectral transform.

Since the first Poisson bracket in new field variables has the form

{w(x), η(x ′)}1 = −
[

1

η
δ(x − x ′)

]′′
, {η(x),w(x ′)}1 = 1

η
δ′′(x − x ′),

{w(x),w(x ′)}1 = 0, {η(x), η(x ′)}1 = −
[
wx

η2
∂x + ∂x

wx

η2

]
δ(x − x ′),

then the modified Gurevich–Zybin system (28) as a member of an integrable hierarchy with
all other commuting flows together can be written in the bi-Hamiltonian form

wtk = ∂x

δHk+1

δw
= −∂2

x

[
1

η

δHk

δη

]
,

ηtk = ∂x

δHk+1

δη
= 1

η
∂2
x

δHk

δw
−

[
2
wx

η2
∂x +

(
wx

η2

)
x

]
δHk

δη
.

An eigenvalue problem for the recursion operator as a ratio of both Hamiltonian structures[
0 −∂2

x
1
η

1
η
∂2
x −(

wx

η2 ∂x + ∂x
wx

η2

)
] (

ϕ1

ϕ2

)
= 2λ∂x

(
ϕ1

ϕ2

)

can be written as one equation

ϕxxx + 4(λ2η2 + λσ)ϕx + 2(λ2η2 + λσ)xϕ = 0,

where ϕ1 = ϕx , ϕ2 = −2ληϕ and σ = wx . However, the above equation can be reduced to

ψxx + (λ2η2 + λσ)ψ = 0,
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where ϕ = ψψ+ is a squared eigenfunction and ψ,ψ+ are linear conjugate solutions with
different asymptotics at infinity λ → ∞. This linear spectral problem (more precisely, just
‘x’-dynamics) is well known in the theory of integrable systems: corresponding systems are
members (commuting flows) of the two-component Harry Dym hierarchy (see, for instance,
[19]). All such members of this hierarchy can be determined by the spectral transform

ψxx = −(λ2η2 + λσ)ψ, ψt = bψx − 1
2bxψ, (29)

where b(ζ, η, λ) is a polynomial function with respect to the spectral parameter λ for positive
members. The compatibility condition (ψxx)t = (ψt )xx yields the relationship

(λ2η2 + λσ)t = [
1
2∂3

x + 2(λ2η2 + λσ)∂x + (λ2η2 + λσ)x
]
b,

where the two-component Harry Dym system (see [19])

ηt1 =
(

σ

η2

)
x

, σt1 =
(

1

η

)
xxx

can be obtained if b = 2λ/η. Thus, the twice potential two-component Harry Dym system

ηt1 =
(

uxx

η2

)
x

, ut1 =
(

1

η

)
x

(30)

is the first member of positive part of above hierarchy and the first member of its negative part
is the modified Gurevich–Zybin system (28)

ηt−1 + ∂x(uη) = 0, uxt−1 + uuxx + 1
2u2

x = 1
2η2 (31)

determined by the choice b = (2λ)−1 − u (it means that we must identify t ≡ t−1 for the
Gurevich–Zybin system (2)).

Remark 5. The reciprocal transformation (see (8))

dτ1 = dt1, dτ−1 = dt−1, dz = ρ dx − ρu dt−1 −
(

ux

η

)
x

dt1

simultaneously linearizes the Gurevich–Zybin system (see (9) and (10)) and preserves the
two-component Harry Dym system:

ρt1 = −
(

w

η

)
xx

, wt1 =
(

1

η

)
xx

, ηt1 =
(

wx

η2

)
x

→ ρ̄τ1 = −
(

w̄

η̄

)
zz

, w̄τ1 =
(

1

η̄

)
zz

, η̄τ1 =
(

w̄z

η̄2

)
z

,

where

ρ̄ = 1

ρ
, w̄ = −w

ρ
, η̄ = η

ρ
.

Such reciprocal auto-transformation is the first example in the theory of integrable systems.

Remark 6. The twice potential two-component Harry Dym system (30) written in field
variables (ρ, u) was also found in [5] (see formula (21) therein), but was not recognized.
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8. Reciprocal and Miura-type transformations

Application of the reciprocal transformation (in fact, it was given in [19], formulae (32)–(34)
therein; cf (13))

dy1 = dt1, dy−1 = dt−1, dζ = η dx − ηu dt−1 +
uxx

η2
dt1 (32)

to the spectral transform (29) yields another well-known spectral transform (see, for instance,
[19, 14]), where ‘ζ ’-dynamics is

ψ̃ζζ +

[
λ2 − ũλ − υ̃ +

ũ2

4

]
ψ̃ = 0, (33)

‘y’-dynamics is

ψ̃y1 = (2λ + ũ)ψ̃ζ − 1

2
ũζ ψ̃, ψ̃y−1 = 1

4λ
(2ηψ̃ζ − ηζ ψ̃) (34)

and

ψ̃ = η1/2ψ, −ũ = uζζ +
ηζ

η
uζ , −υ̃ +

ũ2

4
= η2

ζ

4η2
− ηζζ

2η
. (35)

The compatibility conditions (ψ̃ζζ )y1 = (
ψ̃y1

)
ζ ζ

and (ψ̃ζζ )y−1 = (
ψ̃y−1

)
ζ ζ

yield the first
positive member

ũy1 = 2∂ζ

[
ũ2

2
+ υ̃

]
, υ̃y1 = 2∂ζ

[
ũυ̃ − 1

4
ũζ ζ

]
, (36)

and the first negative member

ũy−1 = −ηζ , υ̃y−1 = 1

2
∂ζ (ũη), −1

2
ηζζζ +

(
2υ̃ − ũ2

2

)
ηζ +

(
υ̃ζ − 1

2
ũũζ

)
η = 0,

which also can be obtained by the limit λ̃ → 0 from the generating function of commuting
flows

ũy = −η̃ζ , υ̃y = ∂ζ

[(
1

2
ũ − λ̃

)
η̃

]
,

(37)

η̃ζ ζ ζ + 4

(
λ̃2 − ũλ̃ − υ̃ +

ũ2

4

)
η̃ζ + 2

(
−λ̃ũζ − υ̃ζ +

1

2
ũũζ

)
η̃ = 0,

where η̃ = ϕ̃ϕ̃+ is a squared eigenfunction and ϕ̃, ϕ̃+ are linear conjugate solutions of the
spectral transform (33) with different asymptotics at infinity λ̃ → ∞ (for details see, for
instance, [20]).

At the same time, as was proved in [7] (see also section 3 above), the modified Gurevich–
Zybin system is linearized by the above reciprocal transformation (32). Simultaneously, the
twice potential two-component Harry Dym system (30) transforms into the twice degenerate
twice modified Kaup–Boussinesq system

uy1 = −uζuζζ − ηζ

η

(
1 + u2

ζ

)
, ηy1 = ηuζζζ +

(
ηζζ − 2

η2
ζ

η

)
uζ . (38)

It is well known that (36) is the Kaup–Boussinesq system (see, for instance, [21]). Several
modified Kaup–Boussinesq systems were presented in [14]. The modified Kaup–Boussinesq
system is

ũy1 = ∂ζ

[
3
2 ũ2 + 2u2

1 + 2u1,ζ

]
, u1,y1 = ∂ζ

[
u1ũ − 1

2 ũζ

]
,
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where u1 is a new intermediate field variable and the first Miura transformation is

υ̃ = 1
4 ũ2 + u2

1 + u1,ζ . (39)

The twice modified Kaup–Boussinesq system is

u1,y1 = ∂ζ

[(
2u2

1 − u1,ζ

)
u2 − 1

2u2,ζ ζ

]
, u2,y1 = ∂ζ

[
2u1

(
1 + u2

2

)
+ u2u2,ζ

]
,

where u2 is another new intermediate field variable and the second Miura transformation is

ũ = 2u1u2 + u2,ζ . (40)

It was proved in [14] that the Kaup–Boussinesq system has third and fourth Miura
transformations (see also [22]). Their double parametric degeneration to purely potential
form (cf (39), (40) with second and third equations from (35))

u1 = 1
2∂ζ ln η, u2 = −uζ (41)

transforms the twice modified Kaup–Boussinesq system into the form (38).
Thus, the main result of this section is the establishment of the link of transformations

(reciprocal and Miura type) between the Gurevich–Zybin and the Kaup–Boussinesq
hierarchies.

9. Second harmonic generation

The generation of the second harmonic wave from the red light of a ruby laser in a crystal
of quartz was in fact the starting point of nonlinear optics. In the one-dimensional case, for
short pulses, when the group-velocity mismatch between both frequency components becomes
important, then the process of second harmonic generation (SHG) is described by the complex
equations (see, for instance, [23, 24]), which in real form are (see [24], formula (6) therein)

ũy−1 = −ηζ = −2ηu1, 2u1,y−1 = −1

η
+ ηũ. (42)

The corresponding spectral problem (see [24], formula (9) therein)

ψ̃ζζ +
[
λ2 − ũλ − u2

1 − u1,ζ

]
ψ̃ = 0, ψ̃y−1 = 1

2λ
ηψ̃ζ − 1

2λ
ηu1ψ̃

is a special reduction of the spectral transform (33), (34). In the general case (37) can be
integrated once

η̃η̃ζ ζ − 1

2
η̃2

ζ + 2

(
λ̃2 − ũλ̃ − υ̃ +

ũ2

4

)
η̃2 + S(λ̃) = 0,

where S(λ̃) is a polynomial function for multi-periodic solutions of the Kaup–Boussinesq
hierarchy (see for instance [25]). Thus, the first negative member of this hierarchy has the
constraint

ηηζζ − 1

2
η2

ζ + 2

(
−υ̃ +

ũ2

4

)
η2 + S−1 = 0,

where S−1 �= 0 is some constant. However, S−1 = 0 in the case of the SHG system! It is
easy to prove by direct substitution (39) and ηζ = 2ηu1 from (42) (see also the first equation
in (41)) in the above equation. Thus, the SHG system (42) is the degenerate first negative
member of the modified Kaup–Boussinesq hierarchy (see (39) and above).

The SHG system(
ln �y−1

)
ζy−1

= 1

�y−1

− �ζ�y−1 (43)
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can be interpreted as the two-component generalization of the sinh-Gordon equation, where
�ζ = ũ and �y−1 = −η. The SHG system has three different linearizable degenerations; as
well as the sinh-Gordon equation it has a parametric degeneration to the famous Liouville
equation which is linearizable. The first two degenerate limits are known (see [26, 27]).
These are the Liouville equation and the modified Liouville equation. The third such case
can be obtained by (see above) differential substitutions (40) and (41). This is the modified
Gurevich–Zybin system (31) re-calculated by the reciprocal transformation (32) (see formula
(27) in [7] and other details in the last section 5)

uζ =
(

1

η

)
y−1

, ηy−1y−1 − 3η2
y−1

2η
+

1

2
η3 = 0.

Thus, a solution of the reduced SHG system(
uζζ +

ηζ

η
uζ

)
y−1

= ηζ , (ln η)ζy−1 = −1

η
− (ηuζ )ζ

in an implicit form is given by (17)

η =
[

1

η0(ζ )
+

η0(ζ )

4
(y−1 − y0(ζ ))2

]−1

,

u = y−1

2

∫
η0(ζ ) dζ − 1

2

∫
η0(ζ )y0(ζ ) dζ,

x =
∫ [

1

η0(ζ )
+ η0(ζ )y2

0(ζ )

]
dζ − y−1

2

∫
η0(ζ )y0(ζ ) dζ +

y2

4

∫
η0(ζ ) dζ.

Thus, a new solution of the SHG system (43) can be found in quadratures

d� = −
(

uζζ +
ηζ

η
uζ

)
dζ − η dy−1.

Final remark. Since the Kaup–Boussinesq system and the nonlinear Schrödinger equation are
related by invertible transformations (see for instance [28]), then their first negative flows are
also related. Since the first negative flow to the nonlinear Schrödinger equation is the famous
Maxwell–Bloch system (in this particular case the ‘self-induced transparency’ coincides with
the Maxwell–Bloch system), then the SHG system is connected to Maxwell–Bloch system by
the same transformations. Thus, the Gurevich–Zybin system is connected with the Maxwell–
Bloch system. Similarly, a new solution of the Maxwell–Bloch system can be found in the
same way. Since the nonlinear Schrödinger equation relates to the Heisenberg magnet by
Miura-type transformations, then a particular case of the ‘Raman scattering’ is also connected
with the Maxwell–Bloch system. Thus, a new solution for the Raman scattering can be
constructed as in the previous case.

10. Open problems

The numerical simulation of nonlinear dynamics described by the Gurevich–Zybin system
yields the hypothesis that a behaviour in multimode form demonstrating the transition from
the hydrodynamic to the equilibrium kinetic state has some regular features (see [1] for details)
possibly generated by integrable properties of the corresponding N-component Gurevich–
Zybin system (see (3))

ρk
t + ∂x(ρ

kuk) = 0, uk
t + ukuk

x + �x = 0, �xx =
N∑

m=1

ρm.
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This problem (integrability in any sense: linearization, inverse scattering transform, bi-
Hamiltonian formulation, etc) is open. For instance, this system written in field variables
uk and υk

(
ρk ≡ υk

x

)
has the ultra-local Hamiltonian structure

υk
t = δH2

δuk
, uk

t = −δH2

δυk
,

where the Hamiltonian is

H2 = 1

2

∫ 
−

N∑
m=1

(um)2υm
x +

(
N∑

m=1

υm

)2

 dx.

It was proved here that the Gurevich–Zybin system has infinitely many Hamiltonian structures.
Existence of the second Hamiltonian structure is enough for an integrability.

Introducing moments

Ak =
N∑

m=1

(um)kρm (44)

then the N -component Gurevich–Zybin system can be written as the nonlocal chain

∂tAk + ∂xAk+1 + kAk−1∂
−1
x A0 = 0, k = 0, 1, 2, . . . , (45)

which looks very similar to the famous integrable Benney moment chain (see [29])

∂tAk + ∂xAk+1 + kAk−1∂xA0 = 0, k = 0, 1, 2, . . . .

The Benney moment chain has infinitely many N-component reductions (see [30])
parametrized by N functions of a single variable (N is an arbitrary natural integer), where
the simplest reduction is (44). The nonlocal chain (45) has at least one simple reduction

Ak = ρuk.

The existence of any other such reductions could be a symptom of integrability. The
integrability of N -component Gurevich–Zybin system and a description of other reductions
of the nonlocal chain (45) will be considered elsewhere.

11. Conclusion

The Gurevich–Zybin system is an example of integrable systems possessing properties of two
different classes: C- and S-integrable. This system is linearizable and has a general solution.
Thus, the Gurevich–Zybin system is from a C-integrable class. However, this system has an
infinite set of Hamiltonian structures and commuting flows. Thus, the Gurevich–Zybin system
is also from a S-integrable class. Moreover, this system has an infinite set of local Hamiltonian
structures, which is unusual in the theory of S-integrable systems. Moreover, all commuting
flows of the Gurevich–Zybin system written in the form of a Monge–Ampere equation are the
same Monge–Ampere equation again. The difference between them is just some derivative
of the function µ(z), which can be eliminated by a point transformation υ = µ′′′(z) (see
(7)). Thus, this is a beautiful example from a mathematical point of view having a physical
application (see [1]). Let us emphasize again: every commuting flow can be written in the
same form (23)

�xx�tktk − �2
xtk = K(�x)�xx,

where K(z) is any a priori given function, but all commuting flows will be written via different
functions �(k), because the point transformation like υ = µ′′′(z) becomes nonlocal

K(�(k)x) = µ(2k+2)(�x).
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The exceptional case is when some derivative µ(n)(z) is a constant: then ‘half’ the commuting
flows are trivial (see [16, 31])

�xx�tktk − �2
xtk = 0,

when n is even, then k � n/2, when n is odd, then k � (n− 1)/2. In the last 10 years a couple
of such examples of integrable systems (mixed properties of C- and S-integrability) were
found in [16, 32]. However, an explanation of such phenomena does not exist at the moment.
One possible explanation is that such systems are an intersection of C- and S-integrability.
Thus, they accumulate properties of these two different classes.

Moreover, we proved that the Gurevich–Zybin system is a degenerate member of the
two-component Harry Dym hierarchy. A degeneracy arises when equations can possess a
parametric freedom. When some of parameters are fixed (to zero, for instance), then such
equations become linearizable. The simplest example is the famous Liouville equation

wxt = ew.

This equation is an intersection of two different integrable hierarchies. Another of them is the
another famous Bonnet equation (well known in physics as the sinh-Gordon equation) first
introduced in the differential geometry of surfaces of constant curvature

wxt = c1 ew + c2 e−w,

which is a member of the potential modified KdV hierarchy (spectral transform 2 × 2)

wτ = wxxx − 1
2w3

x.

Another one is the Tzitzeica equation, well known in affine differential geometry

wxt = c1 ew + c2 e−2w,

which is a member of the potential modified Sawada–Kotera hierarchy (spectral transform
3 × 3)

wτ = wxxxxx + 5
(
wxxwxxx − w2

xwxxx − wxw
2
xx

)
+ w5

x.

Thus, if c2 = 0, then the Liouville equation is still a member of two different integrable
hierarchies simultaneously. This is a good symptom that such equations should be linearizable.
Since the above-mentioned linearizable reduction of the SHG system is determined by 2 × 2
spectral transform, but the SHG system is some reduction of another important three-wave
interaction problem (see, for instance, [24]), then we can assume such systems as the Gurevich–
Zybin system are linearizable if they are an intersection of at least two different integrable
hierarchies (e.g. the Liouville equation is a member of two different hierarchies: of the KdV
equation and of the Sawada–Kotera equation). The bi-Hamiltonian structure presented here
has its origin in the 2 × 2 spectral transform. It will be interesting to find another Hamiltonian
structure coming from a 3 × 3 spectral problem.

Finally, we would like to emphasize that this paper was devoted to the recognition of
the relationship between a couple of remarkable systems having applications in astrophysics,
nonlinear optics and geometry.
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